Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38590081

RESUMO

Massive unmelted Ti6Al4 V (Ti64) particles presented across all surfaces of additively manufactured Ti64 scaffolds significantly impacted the designed surface topography, mechanical properties, and permeability, reducing the osseointegration of the scaffolds. In this study, the proposed flowing acid etching (FAE) method presented high efficiency in eliminating Ti64 particles and enhancing the surface modification capacity across all surfaces of Ti64 scaffolds. The Ti64 particles across all surfaces of the scaffolds were completely removed effectively and evenly. The surface topography of the scaffolds closely resembled the design after the 75 s FAE treatment. The actual elastic modulus of the treated scaffolds (3.206 ± 0.040 GPa) was closer to the designed value (3.110 GPa), and a micrometer-scale structure was constructed on the inner and outer surfaces of the scaffolds after the 90 s FAE treatment. However, the yield strength of scaffolds was reduced to 89.743 ± 0.893 MPa from 118.251 ± 0.982 MPa after the 90 s FAE treatment. The FAE method also showed higher efficiency in decreasing the roughness and enhancing the hydrophilicity and surface energy of all of the surfaces. The FAE treatment improved the permeability of scaffolds efficiently, and the permeability of scaffolds increased to 11.93 ± 0.21 × 10-10 mm2 from 8.57 ± 0.021 × 10-10 mm2 after the 90 s FAE treatment. The treated Ti64 scaffolds after the 90 s FAE treatment exhibited optimized osseointegration effects in vitro and in vivo. In conclusion, the FAE method was an efficient way to eliminate unmelted Ti64 particles and obtain ideal surface topography, mechanical properties, and permeability to promote osseointegration in additively manufactured Ti64 scaffolds.

2.
Environ Res ; 252(Pt 1): 118868, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38580003

RESUMO

BACKGROUND: Previous research has shown that lack of leisure activities, either outdoor or social activities, impedes cognitive function. However, the interrelationship between poor cognition and deficient activities is understudied. In addition, whether exposure to air pollution, such as PM2.5, can accelerate the detrimental 'inactivity-poor cognition' cycle, is worthy of investigation. METHODS: We used data from the 2008, 2011, 2014, and 2018 waves of the Chinese Longitudinal Healthy Longevity Survey (CLHLS). We assessed the frequency of outdoor or social activities at each wave. The cognitive function was examined using a China-Modified Mini-mental State Examination. We estimated the residential exposure to fine particular matter (PM2.5) via a satellite-based model. We applied cross-lagged panel (CLP) model to examine the bi-directional relationship between outdoor or social activities and cognitive function. We then examined the effect of PM2.5 exposure with sequent cognitive function and activities using generalized estimation equation (GEE) model. FINDINGS: Overall, we observed significant bi-directional associations between outdoor or social activities and cognitive function. Participants with better cognitive function in the last wave were more likely to engage in outdoor or social activities in the following wave (outdoor activities: ß = 0.37, 95% CI [0.27,0.48], P < 0.01; social activities: ß = 0.05, 95% CI [0.02,0.09] P < 0.01). Meanwhile, higher engagement in outdoor or social activities in the last wave was associated with more favorable cognitive function in the following wave (outdoor activities: ß = 0.06, 95% CI [0.03,0.09], P < 0.01; social activities: ß = 0.10, 95% CI [0.03,0.18], P < 0.01). Notably, an increase in PM2.5 exposure during the preceding year was significantly associated with a declining cognitive function (ß = -0.05, 95% CI [-0.08,-0.03], P < 0.01), outdoor activities (ß = -0.02, 95% CI [-0.04, -0.01], P < 0.01) and social activities (ß = -0.02, 95% CI [-0.02, -0.01], P < 0.01) in the current year; the lagged effects of the PM2.5 exposure in the past year of the last wave on activities and cognitive function of the following wave were also observed. INTERPRETATION: Our findings not only indicate the bi-directional links between the frequency of outdoor or social activities and cognitive function, but also report that PM2.5 exposure plays a role in catalyzing the detrimental inactivity-poor cognition cycle. Future research should investigate whether the policy-driven interventions, such as clean air policies, can break the unfavorable activity-cognition cycle, and thereby promoting health from the dual gains in leisure activities and cognition.

3.
Micromachines (Basel) ; 14(11)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-38004842

RESUMO

The miniaturization of quantum sensors is a popular trend for the development of quantum technology. One of the key components of these sensors is a coil which is used for spin modulation and manipulation. The bi-planar coils have the advantage of producing three-dimensional magnetic fields with only two planes of current confinement, whereas the traditional Helmholtz coils require three-dimensional current distribution. Thus, the bi-planar coils are compatible with the current micro-fabrication process and are quite suitable for the compact design of the chip-scale atomic devices that require stable or modulated magnetic fields. This paper presents a design of a miniature bi-planar coil. Both the magnetic fields produced by the coils and their inhomogeneities were designed theoretically. The magnetic field gradient is a crucial parameter for the coils, especially for generating magnetic fields in very small areas. We used a NMR (Nuclear Magnetic Resonance) method based on the relaxation of 131Xe nuclear spins to measure the magnetic field gradient in situ. This is the first time that the field inhomogeneities of the field of such small bi-planar coils have been measured. Our results indicate that the designed gradient caused error is 0.08 for the By and the Bx coils, and the measured gradient caused error using the nuclear spin relaxation method is 0.09±0.02, suggesting that our method is suitable for measuring gradients. Due to the poor sensitivity of our magnetometer under a large Bz bias field, we could not measure the Bz magnetic field gradient. Our method also helps to improve the gradients of the miniature bi-planar coil design, which is critical for chip-scale atomic devices.

4.
BMC Geriatr ; 23(1): 569, 2023 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-37716958

RESUMO

BACKGROUND: It remains unclear whether plant-based or animal-based dietary patterns are more beneficial for older adults more in maintaining muscle mass. Using a prospective cohort with nationwide sample of China older adults in this study, we aimed to examine the relationship between adhering to plant-based diet patterns or animal-based diet patterns and muscle loss. METHODS: We included 2771 older adults (≥ 65 years) from the Chinese Longitudinal Health Longevity Survey (CLHLS) with normal muscle mass at baseline (2011 and 2014 waves), which followed up into 2018. Plant-based dietary pattern scores and preference subgroups were constructed using 16 common animal-based and plant-based food frequencies. We used the corrected appendicular skeletal muscle mass (ASM) prediction formula to assess muscle mass. We applied the Cox proportional hazard risk regression to explore associations between dietary patterns and low muscle mass (LMM). RESULTS: During a mean of 4.1 years follow-up, 234 (8.4%) participants with normal muscle mass at baseline showed LMM. The plant-based dietary pattern reduced the risk of LMM by 5% (Hazard Ratios [HR]: 0.95, 95% confidence intervals [95%CI]: 0.92-0.97). In addition, a high plant-based food company with a high animal-based food intake pattern reduced the risk of LMM by 60% (HR: 0.40, 95% CI: 0.240-0.661) and 73% (HR: 0.27, 95% CI: 0.11-0.61) in the BADL disability and IADL disability population compared with a low plant-based food and high animal-based food intake, whereas a high plant-based food and low animal-based food intake was more beneficial in reducing the risk of LMM in the normal BADL functioning (HR: 0.57, 95% CI: 0.35-0.90) and IADL functioning (HR: 0.51, 95% CI: 0.28-0.91) population. CONCLUSIONS: When it comes to maintaining muscle mass in older Chinese people with functional independence, a plant-based diet pattern is more beneficial and effective than the animal-based one. People with functional dependence may profit from a combination of plant-based and animal-based diets to minimize muscle loss.


Assuntos
Dieta Vegetariana , População do Leste Asiático , Músculo Esquelético , Atrofia Muscular , Humanos , Dieta/efeitos adversos , Dieta/métodos , Estudos Prospectivos , Dieta Vegetariana/efeitos adversos , Dieta Vegetariana/métodos , Idoso , Atrofia Muscular/dietoterapia , Atrofia Muscular/prevenção & controle , Estado Funcional , Músculo Esquelético/fisiologia , Músculo Esquelético/fisiopatologia , Dieta Rica em Proteínas/métodos
5.
J Affect Disord ; 341: 211-218, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37579882

RESUMO

BACKGROUND: There is a greater likelihood of anxiety and depression among older adults who suffer falls. This study examined the relationships of falls and severe falls with anxiety and depressive symptoms, and the moderating role of psychological resilience on these associations. METHODS: Our study recruited participants from the 2018 Chinese Longitudinal Healthy Longevity Survey (CLHLS), a nationally representative cohort study. A total of 11,857 participants included in the analysis. We used a linear regression model to investigate the relationship between falls/severe falls and anxiety/depressive symptoms, adjusting for a range of potential covariates and a bootstrapping sample test to examine the potential moderating role of psychological resilience in these relationships. RESULTS: Older adults who suffered the falls have higher anxiety/depressive symptoms (ß = 0.28 [0.23, 0.32] for anxiety symptoms, p < 0.001; ß = 0.21 [0.16, 0.25] for depressive symptoms, p < 0.001), and those who suffered the severe falls have higher anxiety/depressive symptoms (ß = 0.30 [0.24, 0.37] for anxiety symptoms, p < 0.001; ß = 0.21 [0.15, 0.27] for depressive symptoms, p < 0.001), in the fully adjusted model. The relationship between falls/severe falls and anxiety/depressive symptoms was mitigated in participants with higher levels of psychological resilience. LIMITATIONS: The present study is based on cross-sectional data, which limits the ability to infer causal relationships. CONCLUSIONS: Falls/severe falls were positively associated with anxiety and depression, and that psychological resilience could moderate this association. Our findings suggest that psychological resilience may be an effective target for intervention and prevention of fall-related symptoms of anxiety and depression.


Assuntos
Depressão , Resiliência Psicológica , Humanos , Idoso , Depressão/psicologia , Acidentes por Quedas , Estudos Transversais , Estudos de Coortes , Ansiedade/psicologia
6.
Materials (Basel) ; 16(14)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37512263

RESUMO

The ultra-fast laser heating process of nano-films is characterized by an ultra-short duration and ultra-small space size, in which the classical Fourier law based on the hypothesis of local equilibrium is no longer applicable. Based on the Cattaneo-Vernotte (CV) model and the dual-phase-lag (DPL) model, the two-dimensional analytical solutions of heat conduction in nano-films under ultra-fast laser are obtained using the integral transformation method. The results show that there is a thermal wave phenomenon inside the film, which becomes increasingly evident as the elapse of the lag time of the temperature gradient. Moreover, the wave amplitude in the vertical direction is much larger than that in the horizontal direction of the nano-film. By comparing the numerical result of the two models, it is found that the temperature distribution inside the nano-film based on the DPL model is gentler than that of the CV model. Additionally, the temperature distribution in the two-dimensional solution is lower than that in the one-dimensional solution under the same Knudsen number. In the comparison results of the CV model, the maximum peak difference in the thermal wave reaches 75.08 K when the Knudsen number is 1.0. This demonstrates that the horizontal energy carried by the laser source significantly impacts the temperature distribution within the film.

7.
Biomed Mater ; 18(4)2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37236200

RESUMO

Titanium and its alloys have been widely used in bone tissue defect treatment owing to their excellent comprehensive properties. However, because of the biological inertness of the surface, it is difficult to achieve satisfactory osseointegration with the surrounding bone tissue when implanted into the body. Meanwhile, an inflammatory response is inevitable, which leads to implantation failure. Therefore, solving these two problems has become a new research hotspot. In current studies, various surface modification methods were proposed to meet the clinical needs. Yet, these methods have not been classified as a system to guide the follow-up research. These methods are demanded to be summarized, analyzed, and compared. In this manuscript, the effect of physical signal regulation (multi-scale composite structure) and chemical signal regulation (bioactive substance) generated by surface modification in promoting osteogenesis and reducing inflammatory responses was generalized and discussed. Finally, from the perspective of material preparation and biocompatibility experiments, the development trend of surface modification in promoting titanium implant surface osteogenesis and anti-inflammatory research was proposed.


Assuntos
Osteogênese , Titânio , Titânio/química , Próteses e Implantes , Osso e Ossos , Osseointegração , Propriedades de Superfície
8.
Front Pharmacol ; 14: 1163638, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37101547

RESUMO

Background: Chronic fatigue syndrome (CFS) is characterized by significant and persistent fatigue. Ginseng is a traditional anti-fatigue Chinese medicine with a long history in Asia, as demonstrated by clinical and experimental studies. Ginsenoside Rg1 is mainly derived from ginseng, and its anti-fatigue metabolic mechanism has not been thoroughly explored. Methods: We performed non-targeted metabolomics of rat serum using LC-MS and multivariate data analysis to identify potential biomarkers and metabolic pathways. In addition, we implemented network pharmacological analysis to reveal the potential target of ginsenoside Rg1 in CFS rats. The expression levels of target proteins were measured by PCR and Western blotting. Results: Metabolomics analysis confirmed metabolic disorders in the serum of CFS rats. Ginsenoside Rg1 can regulate metabolic pathways to reverse metabolic biases in CFS rats. We found a total of 34 biomarkers, including key markers Taurine and Mannose 6-phosphate. AKT1, VEGFA and EGFR were identified as anti-fatigue targets of ginsenoside Rg1 using network pharmacological analysis. Finally, biological analysis showed that ginsenoside Rg1 was able to down-regulate the expression of EGFR. Conclusion: Our results suggest ginsenoside Rg1 has an anti-fatigue effect, impacting the metabolism of Taurine and Mannose 6-phosphate through EGFR regulation. This demonstrates ginsenoside Rg1 is a promising alternative treatment for patients presenting with chronic fatigue syndrome.

9.
Opt Express ; 31(3): 3743-3754, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36785360

RESUMO

The electronic spin polarization of alkali-metal-vapor atoms is a pivotal parameter for atomic magnetometers. Herein, a novel method is presented for determining the spin polarization with a miniaturized single-beam spin-exchange-relaxation-free (SERF) magnetometer on the basis of zero-field cross-over resonance. Two separate laser beams are utilized to heat the cell and interrogate the vapor atoms, respectively. Spin polarization can be extracted by measuring the resonance response signal of the magnetometer to the transverse magnetic field under different irradiances. Results of these experiments are consistent well with the theoretical predictions with the maximum deviation less than 4%. The proposed method has the integrated advantages of possessing a simple configuration and in-situ measurement. Furthermore, combined with a homemade optical differential detection system with a factor of approximately three of the power noise suppression, the developed single-beam SERF atomic magnetometer with a measuring sensitivity of 32 fT/Hz1/2 has been achieved. This demonstrated approach can help guide the development of chip-scale atomic magnetometers for bio-magnetic field imaging applications.

10.
Microsyst Nanoeng ; 9: 9, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36644333

RESUMO

With the increasing demand for multidirectional vibration measurements, traditional triaxial accelerometers cannot achieve vibration measurements with high sensitivity, high natural frequency, and low cross-sensitivity simultaneously. Moreover, for piezoresistive accelerometers, achieving pure axial deformation of the piezoresistive beam can greatly improve performance, but it requires the piezoresistive beam to be located in a specific position, which inevitably makes the design more complex and limits the performance improvement. Here, a monolithically integrated triaxial high-performance accelerometer with pure axial stress piezoresistive beams was designed, fabricated, and tested. By controlling synchronous displacements at both piezoresistive beam ends, the pure axial stress states of the piezoresistive beams could be easily achieved with position independence without tedious calculations. The measurement unit for the z-axis acceleration was innovatively designed as an interlocking proof mass structure to ensure a full Wheatstone bridge for sensitivity improvement. The pure axial stress state of the piezoresistive beams and low cross-sensitivity of all three units were verified by the finite element method (FEM). The triaxial accelerometer was fabricated and tested. Results showing extremely high sensitivities (x axis: 2.43 mV/g/5 V; y axis: 2.44 mv/g/5 V; z axis: 2.41 mV/g/5 V (without amplification by signal conditioning circuit)) and high natural frequencies (x/y axes: 11.4 kHz; z-axis: 13.2 kHz) were obtained. The approach of this paper makes it simple to design and obtain high-performance piezoresistive accelerometers.

11.
Nutrients ; 14(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36501094

RESUMO

The purpose of this study was to associate the anti-inflammatory dietary diversity and depressive symptoms among a nationwide sample of Chinese older adults. We used data from the 2018 wave of Chinese longitudinal healthy longevity survey (CLHLS). We assessed depressive symptoms using the 10 items of the center for epidemiologic studies depression scale (CES-D-10). Based on the dietary diversity index (DDI) generated by previous studies, we construct two novel indicators: the protein-enriched dietary diversity index diet (PEDDI) and the anti-inflammatory dietary diversity index diet (AIDDI). We used multivariate logistic models to evaluate the associations of DDI, PEDDI, and AIDDI with depressive symptoms, statistically adjusted for a range of potential confounders. A total of 12,192 participants (mean age 83.6 years) were included in the analysis. We found that participants with a higher score of DDI (OR = 0.91, 95% CI: 0.89-0.92) and PEDDI (OR = 0.91, 95% CI: 0.88-0.93) showed lower odds of having depressive symptoms, while the association between AIDDI and depressive symptoms was more marked (OR = 0.80, 95% CI: 0.78-0.83). The associations remained in subgroup analyses and sensitivity analyses. The results indicate that intaking diversified diet, particularly anti-inflammatory foods, may be associated with a lower risk of depressive symptoms. The findings of this study, if confirmed as causal, provide evidence that an intervention of adopting an anti-inflammatory diversified diet may reduce the burden of depression among older adults.


Assuntos
Depressão , Dieta , Humanos , Idoso , Idoso de 80 Anos ou mais , Estudos Transversais , Depressão/etiologia , Estudos Longitudinais , Anti-Inflamatórios
12.
Opt Express ; 30(10): 16541-16552, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-36221495

RESUMO

We describe a single beam compact spin exchange relaxation free (SERF) magnetometer whose configuration is simple and compatible with the silicon-glass bonding micro-machining method. Due to the small size of the vapor cell utilized in a miniature atomic magnetometer, the wall relaxation could not be neglected. In this study we show that Ne buffer gas is more efficient than that of the other typically utilized gas species such as nitrogen and helium for wall relaxation reduction theoretically and experimentally. 3 Amagats (1 Amagat=2.69×1019/cm3) Ne gas is filled in the vapor cell and this is the first demonstration of a Cs-Ne SERF magnetometer. In order to reduce the laser amplitude noise and the large background detection offset, which is reported to be the main noise source of a single beam absorption SERF magnetometer, we developed a laser power differential method and a factor of approximately two improvement of the power noise suppression has been demonstrated. In order to reduce the power consumption of the magnetometer, the Cs based atomic magnetometer is studied. We did an optimization of the magnetometer and a sensitivity of 23fT/Hz1/2@100Hz has been achieved. This is the first demonstration of a single beam Cs based SERF magnetometer.

13.
Front Pharmacol ; 13: 904190, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35770096

RESUMO

Background: Paeoniflorin (PF) represents the major bioactive constituent of the traditional Chinese medicine plant Paeonia suffruticosa (Ranunculaceae), which has a long history as a folk medicine in Asian. Paeoniflorin, a bitter pinene monoterpene glycoside, has antidepressant effects, but its potential therapeutic mechanism has not been thoroughly explored. Methods: Experimental depression in rats was established by the chronic unpredictable mild stress (CUMS) combined with orphan method, and the efficacy of paeoniflorin on depression was evaluated by the sucrose preference test and open field test. The antidepressant mechanism of paeoniflorin was investigated by metabolomic and network pharmacology. The relevant pathways of biomarkers highlighted in metabolomics were explored, and the possible targets of paeoniflorin in the treatment of depression were further revealed through network analysis. The binding activity of paeoniflorin to key targets was verified by molecular docking. Results: Metabolomics showed that rats with CUMS-induced depression had urine metabolic disorders, which were reversed by paeoniflorin through the regulation of metabolic pathways. Metabolites that play a key role in the function of paeoniflorin include citric acid, thiamine monophosphate, gluconolactone, 5-hydroxyindoleacetic acid and stachyose. Key predicted targets are SLC6A4, TNF, IL6 and SLC6A3. An important metabolic pathway is the Citrate cycle (TCA cycle). Conclusion: Network integrative analysis in this study showed that paeoniflorin could improve depressive-like symptoms in model rats with CUMS-induced depression and overall correct the disordered metabolic profile through multiple metabolic pathways.

14.
Biomed Opt Express ; 13(11): 5937-5951, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36733752

RESUMO

Recording moving magnetoencephalograms (MEGs ), in which a person's head can move freely as the brain's magnetic field is recorded, has been a key subject in recent years. Here, we describe a method based on an optically pumped atomic co-magnetometer (OPACM) for recording moving MEGs. In the OPACM, hyper-polarized nuclear spins produce a magnetic field that blocks the background fluctuation low-frequency magnetic field noise while the rapidly changing MEG signal is recorded. In this study, the magnetic field compensation was studied theoretically, and we found that the compensation is closely related to several parameters such as the electron spin magnetic field, nuclear spin magnetic field, and holding magnetic field. Furthermore, the magnetic field compensation was optimized based on a theoretical model . We also experimentally studied the magnetic field compensation and measured the responses of the OPACM to different magnetic field frequencies. We show that the OPACM clearly suppresses low-frequency (under 1 Hz) magnetic fields. However, the OPACM responses to magnetic field frequencies around the band of the MEG. A magnetic field sensitivity of 3 fT/Hz1/2 was achieved. Finally, we performed a simulation of the OPACM during utilization for moving MEG recording. For comparison, the traditional compensation system for moving MEG recording is based on a coil that is around 2 m in dimension , while our compensation system is only 2 mm in dimension .

15.
Nanotechnology ; 33(4)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34416744

RESUMO

Herein, a novel conductive poly(N-phenylglycine) (PNPG) polymer was successfully prepared, byin situelectrochemical polymerization method (+0.75 VversusAg/AgCl) for 10 min, on flexible stainless-steel plate coated with a thin Au film (Au/SS) to serve as a binder-free pseudocapacitive PNPG/Au/SS electrode for energy storage devices. Compared to the electrode without Au coating, PNPG/Au/SS electrode exhibited better electrochemical performance with larger specific capacitance (495 F g-1at a current density of 2 A g-1), higher rate performance and lower resistance, which are good indications to act as a positive electrode for asymmetric supercapacitor devices. Combined with activated carbon as a negative electrode, an asymmetric supercapacitor device was constructed. It displayed a specific capacitance of 38 F g-1at a current density of 0.5 A g-1and an energy density of 5.3 Wh kg-1at a power density of 250 W kg-1. Experimentally, two asymmetric supercapacitor devices were connected in series to power a home-made windmill continuously for 8 s, revealing the high potential of this novel conductive polymer material for energy storage application.

16.
Bone Joint Res ; 10(7): 411-424, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34259564

RESUMO

AIMS: The use of 3D-printed titanium implant (DT) can effectively guide bone regeneration. DT triggers a continuous host immune reaction, including macrophage type 1 polarization, that resists osseointegration. Interleukin 4 (IL4) is a specific cytokine modulating osteogenic capability that switches macrophage polarization type 1 to type 2, and this switch favours bone regeneration. METHODS: IL4 at concentrations of 0, 30, and 100 ng/ml was used at day 3 to create a biomimetic environment for bone marrow mesenchymal stromal cell (BMMSC) osteogenesis and macrophage polarization on the DT. The osteogenic and immune responses of BMMSCs and macrophages were evaluated respectively. RESULTS: DT plus 30 ng/ml of IL4 (DT + 30 IL4) from day 3 to day 7 significantly (p < 0.01) enhanced macrophage type 2 polarization and BMMSC osteogenesis compared with the other groups. Local injection of IL4 enhanced new bone formation surrounding the DT. CONCLUSION: DT + 30 IL4 may switch macrophage polarization at the appropriate timepoints to promote bone regeneration. Cite this article: Bone Joint Res 2021;10(7):411-424.

17.
Faraday Discuss ; 231(0): 342-355, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34195742

RESUMO

p-Toluenesulfonic acid (PTSA) is a typical homogeneous acid for biodiesel production. Due to the shortcomings of high deliquescence and non-recyclability, it is necessary to synthesize a recyclable solid acid. For the sake of this, UiO-66(Zr) is used to support PTSA through defect coordination, and four different preparation routes are compared. The obtained catalyst (UiO-G) is characterized with thermogravimetry analysis (TG), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), pyridine FTIR spectroscopy (py-FTIR), nitrogen adsorption-desorption, and base titration. In addition, the effects of esterification parameters on conversion are investigated to obtain the optimal conditions. To further verify the high catalytic activity of UiO-G, the kinetic model of solid-liquid-liquid esterification is established, in which the kinetic parameters of activation energy, reaction order, and exponential factor are calculated. Results indicate the PTSA is successfully inserted in UiO-66(Zr) without destroying its original structure. With that, the maximum conversion of oleic acid to biodiesel of 91.3% is achieved with a molar ratio of methanol/oleic acid of 12 and a catalyst amount of 8 wt% at 70 °C for 2 h. Moreover, UiO-G could remarkably reduce the activation energy, where the activation energy is 28.61 kJ mol-1, the average reaction order is 1.51, and the pre-exponential factor is 29.11 min-1.


Assuntos
Biocombustíveis , Benzenossulfonatos , Catálise , Esterificação , Estruturas Metalorgânicas , Ácidos Ftálicos , Pirenos
18.
Int J Med Sci ; 18(8): 1886-1898, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33746606

RESUMO

Rheumatoid arthritis (RA) is a systemic chronic autoimmune inflammatory disease which is mainly characterized by synovitis and results in a severe burden for both the individual and society. To date, the underlying mechanisms of RA are still poorly understood. Pentraxin 3 (PTX3) is a typical long pentraxin protein which has been highly conserved during evolution. Meanwhile, functions as well as properties of PTX3 have been extensively studied. Several studies identified that PTX3 plays a predominate role in infection, inflammation, immunity and tumor. Interestingly, PTX3 has also been verified to be closely associated with development of RA. We therefore accomplished an elaboration of the relationships between PTX3 and RA. Herein, we mainly focus on the associated cell types and cognate cytokines involved in RA, in combination with PTX3. This review infers the insight into the interaction of PTX3 in RA and aims to provide novel clues for potential therapeutic target of RA in clinic.


Assuntos
Artrite Reumatoide/imunologia , Proteína C-Reativa/metabolismo , Componente Amiloide P Sérico/metabolismo , Animais , Artrite Reumatoide/patologia , Modelos Animais de Doenças , Progressão da Doença , Humanos , Imunidade Inata , Inflamação/imunologia , Inflamação/patologia
19.
Mater Sci Eng C Mater Biol Appl ; 118: 111505, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33255064

RESUMO

Three-dimensional (3D) printing technology is serving as a promising approach of fabricating titanium (Ti) and its alloys used for bone tissue engineering. However, the biological inertness nature of Ti material limits its capability to bind directly with the bone tissue. This paper aims to enhance the bioactivity and osteogenesis of 3D printed Ti-6Al-4V implants by constructing a hierarchical micro/nano-topography on the surface. Ti-6Al-4V implants were prepared by the electron beam melting (EBM) technique. A method combining ultrasonic acid etching with anodic oxidation is proposed for surface modification of EBM Ti-6Al-4V implants in this study. The acid etching step was to remove any existent residual powders on the implant's surface and construct micro-pits and -grooves on the EBM microrough surface. Nanotube arrays with a diameter of 40-50 nm were superimposed on the micro-structured substrate via anodic oxidation. The results of in vitro experiments showed that the hierarchical micro/nano-structured surface on Ti-6Al-4V after acid etching and anodic oxidation (AN) promoted the proliferation and osteogenic differentiation of pre-osteoblast cells (MC3T3-E1) via enhancing the surface hydrophilicity and bioactivity compared with the polished Ti surface (P). Micro-CT and histological analysis were used to assess the in vivo osteogenic properties enhancement. The results 8 weeks after the surgery showed the ratio of bone volume to total volume (BV/TV) of AN implant was 43.4%, which represented 1.5 times that of as-printed implants (AM) without any post-treatment. Considerable increment of bone-to-implant contact area was also detected from the micro-CT reconstructed 3D models in comparison with AM implants and acid etched (AE) EBM implants. In conclusion, the hierarchical micro/nano topography generated on the EBM native surface showed an improvement of bioactivity and osteogenic properties, which is expected to accelerate the application of 3D printed orthopedic and dental implants in clinics. STATEMENT OF SIGNIFICANCE: Traditional titanium implants have the nature of biological inertness, which limits their capability to bind directly with the bone tissue. The failure of implants after couple of years of implantation will cause huge pain to the patients. In this work, a surface modification method for 3D printed implants was developed to construct a hierarchical micro/nano-structure. Through the in vitro and in vivo experiments, we proved that this hierarchical micro/nano-structure induced a better promotion effect on osteoblast proliferation and differentiation comparing with untreated surface or polished surface, and was also capable of bolstering the new bone formation, suggesting a potent strategy to improve the biological properties of 3D printed titanium implants. The work is expected to accelerate the application of 3D printed orthopedic and dental implants in clinics.


Assuntos
Osseointegração , Titânio , Humanos , Osteoblastos , Osteogênese , Impressão Tridimensional , Propriedades de Superfície , Titânio/farmacologia
20.
ACS Omega ; 5(49): 31738-31743, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33344827

RESUMO

Three-dimensional (3D) printing technology has been proved to be a powerful tool for the free-form fabrication of titanium (Ti) implants. However, the surface quality of 3D printed Ti implants is not suitable for clinical application directly. Therefore, surface modification of 3D printed Ti implants is required in order to achieve good biocompatibility and osseointegration. In this study, a novel surface modification method of 3D printed Ti-6Al-4V implants has been proposed, which combined acid etching with hydrothermal treatment to construct micro/nanostructures. Polished TC4 sheets (P), electron beam melting Ti sheets (AE), and micro/nanostructured Ti sheets (AMH) were used in this study to evaluate the effects of different surface morphologies on cellular responses. The surface morphology and 3D topography after treatment were detected via scanning electron microscopy and laser scanning microscopy. The results illustrated that a hierarchical structure comprising micro-valleys and nanowires with a surface roughness of 14.388 µm was successfully constructed. Compared with group P samples, the hydrophilicity of group AMH samples significantly increased with a reduced water contact angle from 54.9° to 4.5°. Cell culture experiments indicated that the micro/nanostructures on the material surface could enhance the cell adhesion and proliferation of MC3T3s. The microstructure could enhance bone-to-implant contact, and the nanostructure could directly interact with some cell membrane receptors. Overall, this study proposes a new strategy to construct micro/nanostructures on the surface of 3D printed Ti-6Al-4V implants and may further serve as a potential modification method for better osteogenesis ability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...